

Treino Matemático

9° ano

Assunto: Propriedades da relação de ordem em IR

Formativa 2

 Completa com os símbolos < ou > de modo a obteres afirmações verdadeiras.

c)
$$-3$$
 ___ -4 ; $(-3)^2$ ___ $(-4)^2$

Sabes que:

Qualquer número elevado a um expoente par é um número positivo.

$$(-3)^2 = -3 \times (-3) = +9$$

 $(-5)^4 = -5 \times (-5) \times (-5) \times (-5) = +25 \times (+25) = +625$

Qualquer número elevado a um expoente ímpar é um número com o sinal da base.

$$(+3)^3 = +3 \times (+3) \times (+3) = (+9) \times (+3) = +27$$

 $(-2)^5 = -2 \times (-2) \times (-2) \times (-2) \times (-2) = +4 \times (+4) \times (-2) = +16 \times (-2) = -32$

Só mantém o sentido da desigualdade para números positivos.

Dados dois números reais positivos $a \in b$, se a < b, então $a^2 \le b^2$.

Dados dois números reais $a \in b$, se a < b, então $a^3 \le b^3$.

2. Completa com os símbolos < ou > de modo a obteres afirmações verdadeiras:

a) 4 ___ 16 ;
$$\sqrt{4}$$
 ___ $\sqrt{16}$

b)
$$100 \underline{\hspace{1cm}} 64 \; ; \; \sqrt{100} \underline{\hspace{1cm}} \sqrt{64}$$

Sabes que:

Não há raízes quadradas de números negativos, porque nenhum número multiplicado por ele próprio pode dar um resultado negativo.

Dados dois números reais positivos a e b, se a < b, então \sqrt{a} < \sqrt{b} .

c) 27 ___ 64 ;
$$\sqrt[3]{27}$$
 ___ $\sqrt[3]{64}$

d)
$$125 \underline{\hspace{1cm}} 64 \; ; \; \sqrt[3]{125} \underline{\hspace{1cm}} \sqrt[3]{64}$$

e)
$$-8$$
 ____ -1 ; $\sqrt[3]{-8}$ ____ $\sqrt[3]{-1}$

f)
$$-27$$
 ___ -125 ; $\sqrt[3]{-27}$ ___ $\sqrt[3]{-125}$

Dados dois números reais $a \in b$, se a < b, então $\sqrt[3]{a} < \sqrt[3]{b}$.

3. Completa com os símbolos < ou > de modo a obteres afirmações verdadeiras:

a)
$$2 - 3$$
 ; $\frac{1}{2} - \frac{1}{3}$

$\frac{1}{2}$			
$\frac{1}{3}$			

2 é o inverso de
$$\frac{1}{2}$$

$$\frac{1}{3}$$
 é o inverso de 3

$$\frac{2}{5}$$
 e o inverso de $\frac{5}{2}$

..

b) $\frac{5}{3}$ ____ $\frac{2}{3}$; $\frac{3}{5}$ ___ $\frac{3}{2}$

Sabes que:

De dois números racionais com o mesmo denominador é maior aquele que tiver maior numerador.

De dois números racionais com o mesmo numerador é maior aquele que tiver menor denominador.